Lipid Biosynthesis

Craig Wheelock February 2nd, 2009

Questions? Comments? craig.wheelock@ki.se

Why do we care about lipids?

- ~80% of European population overweight
- ~ 1/3 obese
 - >=130 million obese adults in EU
 - >6% of total health costs
 - >10-13% of deaths in Europe

Contributes to diabetes, coronary heart disease, hypertension, stroke & cancer

Diseases of dyslipidemia are one of the greatest health challenges of the 21st century

Outline

- Lipid overview: synthesis and structure
- Fatty acids
- Eicosanoids
- Break
- Triacylglycerols
- Phospholipids
- Cholesterol
- Bile acids, enterohepatic circulation
- Summary

What is a lipid?

Classical definition:

biological molecule that is soluble in organic solvent, but insoluble in water

Modern (specific) definition:

fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds

More specific definition:

Hydrophobic small molecules that originate by carbanionbased condensations of thioesters (fatty acids, polyketides, etc.) and/or by carbocation-based condensations of isoprene units (prenols, sterols, etc)

Vary greatly in structure and function

Some typical lipids

In addition:

cholesterol, cofactors, vitamins, bile acids, hormones, eicosanoids, other signaling molecules, etc......

Fatty acids (FA)

- compounds synthesized in nature via condensation of malonyl coenzyme A units by a fatty acid synthase complex
- contain even numbers of carbon atoms in straight chains (commonly C14- C24)
- may be saturated or unsaturated
- can contain variety of substituent groups

Fatty Acids

• Single(σ)-bonded carbon chains with a terminal carboxylic acid:

- Produced de novo by animals and plants
- Can contain double(π)-bonded carbons which are inserted by desaturases

Unsaturation & shorter chain

- ↓ melting point
- † membrane fluidity (cis bond gives the "kink" in the carbon chain)

 Fatty acids are sigma-bonded carbon chains with a carboxylic acid functional group

 Individual fatty acids can be identified by one of two numerical nomenclature systems

n-Designation
Carbon numbering starts from methyl end

 Individual fatty acids can be identified by one of two numerical nomenclature systems

∆-Designation Carbon numbering starts from carboxyl group

Standard nomenclature (arachidonic acid):

Desaturation of Fatty Acids

complex of 3 membrane proteins in E.R.

series of desaturase enzymes creates positionspecific double bonds

• The first desaturation of a saturated fatty acid is always at the $\Delta 9$ position

Plants can also desaturate at the Δ12

 Plants can also desaturate at the ∆12 and the ∆15 carbon

 Animals desaturate plant-derived poly unsaturated fatty acids (PUFAs) at the ∆6 carbon

 To add another double bond, animals must first elongate the fatty acid

Animals can then add a ∆5 double bond

 To make docosahexaenoic acid (DHA, 22:6n3) animals must further elongate the acyl chain to 22 carbons

 Another double bond is inserted at the ∆4 position

BUT THERE IS NO ∆4 DESATURASE

 To make DHA (22:6n3) the fatty acid must first be elongated again to a 24 carbon chain

 Then the chain can be acted upon again by the ∆6 desaturase yielding 24:6n3

 The last step in DHA synthesis is a 2-carbon chain shortening by peroxisomal β-oxidation

 Fatty acids with double bonds on the methylene side of an original ∆9 double bond (n3 and n6 bonds) are of plant origin

 Animals then modify these polyunsaturated fatty acids utilizing their own distinct set of desaturases.

- Why two designations?
 - One is useful to describe biochemical reactions
 - One is useful to track families of fatty acids in nutrition

VS

Biochemical Reactions

- Desaturases and elongases act from the carboxy-terminus of the fatty acid
- Therefore, the ∆-designation is useful to describe the biochemistry of fatty acid metabolism

Nutrition

 The n-designation is useful as it allows nutritionists to link diet with tissue fatty acid composition

Linoleic acid (18:2n6)

Omega fatty acids (\o)

- Nomenclature based upon position of the first double bond relative to the carbon chain terminal methyl
- Omega-3 fatty acids cannot be synthesized de novo by humans, obtained from fish

Omega-6 fatty acids are obtained from diet (grains, etc) and can be synthesized

Fatty acid modification

- Activated FFA (acyl-CoA)
- Elongation
- β-oxidation
- Desaturation
- up to C9 in animals
- >C9 occurs only in plants

Essential FA Metabolism

De Novo Metabolism

Trans-fat contains "trans" vs. "cis" bond

saturated

cis double bond

trans double bond

Elaidic acid – C18, *trans*Melting point = 45°C

TABLE 12.1 Some naturally occurring fatty acids in animals

Number of carbons	Number of double bonds	Common name	Systematic name	Formula
12	0	Laurate	n-Dodecanoate	CH ₃ (CH ₂) ₁₀ COO ⁻
14	0	Myristate	n-Tetradecanoate	CH ₃ (CH ₂) ₁₂ COO-
16	0	Palmitate	<i>n</i> -Hexadecanoate	CH ₃ (CH ₂) ₁₄ COO ⁻
18	0	Stearate	<i>n</i> -Octadecanoate	CH ₃ (CH ₂) ₁₆ COO ⁻
20	0	Arachidate	<i>n</i> -Eicosanoate	CH ₃ (CH ₂) ₁₈ COO ⁻
22	0	Behenate	<i>n</i> -Docosanoate	CH ₃ (CH ₂) ₂₀ COO ⁻
24	0	Lignocerate	<i>n</i> -Tetracosanoate	CH ₃ (CH ₂) ₂₂ COO ⁻
16	1	Palmitoleate	cis - Δ^9 -Hexadecenoate	$CH_3 (CH_2)_5 CH = CH(CH_2)_7 COO^-$
18	1	Oleate	$cis-\Delta^9$ -Octadecenoate	$CH_3(CH_2)_7CH = CH(CH_2)_7COO^-$
18	2	Linoleate	$\emph{cis,cis-}\Delta^9, \Delta^{12}$ - Octadecadienoate	$CH_{3}^{2}(CH_{2})_{4}^{2}(CH = CHCH_{2})_{2}^{2}(CH)_{6}COO^{-1}$
18	3	Linolenate	all- <i>cis</i> - Δ^9 , Δ^{12} , Δ^{15} -Octadecatrienoate	$CH_3CH_2(CH = CHCH_2)_3(CH_2)_6COO^-$
20	4	Arachidonate	all- cis Δ^5 , Δ^8 , Δ^{11} , - Δ^{14} Eicosatetraenoate	$CH_3(CH_2)_4(CH = CHCH_2)_4(CH_2)_2COO^{-1}$

Ex) Linoleate, linoleic acid 18:2n6 cis,cis- Δ^9 , Δ^{12} –octadecatrienoate an ω -6 fatty acid

Fatty acid biosynthesis

- Where? In the cytoplasm in: liver, adipose and mammary glands
- How? Stepwise incorporation of 2 carbon atoms from Acetyl-CoA
- •Cost? both ATP and NADPH

Overall equation for synthesis of 16:0 (palmitate, hexadecanoate)

Fatty acid synthase system

Substrate entry

Translocation

Domain 1:

AT acetyl transferase MT malonyl transferase **CE** condensing enzyme (=β-ketoacyl synthase, KS)

Domain 2:

DH dehydratase **ER** enoyl reductase KR β-ketoacyl reductase **ACP** acyl carrier protein

Domain 3:

TE thioesterase

"activated 2-carbon donor" committed step in FA synthesis

Coenzyme A (CoA-SH)

Acyl CoA Acetyl CoA

the thioester

Acetyl-CoA

Acetyl-CoA-carboxylase (ACC) the committed step in FA synthesis

Malonyl-CoA

Elongation phase of FA synthesis

Acetyl transacylase
Acetyl CoA + ACP ↔ acetyl ACP + CoA

Malonyl transacylase
Malonyl CoA + ACP ↔ malonyl ACP + CoA

ACP – acyl carrier protein

Fatty acid synthase reaction sequence

7 rounds gives: 16:0, palmitate

Palmitate

AT = acetyl transferase

MT = malonyl transferase

KS = β -ketoacyl synthase,

(CE condensing enzyme)

HD = dehydratase

ER = enoyl reductase

KR = β -ketoacyl reductase

ACP = acyl carrier protein

AT = acetyl transferase

MT = malonyl transferase

KS = β -ketoacyl synthase,

(CE condensing enzyme)

HD = dehydratase

ER = enoyl reductase

 $KR = \beta$ -ketoacyl reductase

ACP = acyl carrier protein

Ex) The complete reaction for synthesis of 16:0

$$16:0 + 8 CoA + 7ADP + 7P_i + 14NADP^+ + 6H_2O$$

Palmitate (ionized form of palmitic acid)

Transfer of Acetyl-CoA to the cytosol

→FA synthesized in cytoplasm, acetyl CoA formed from pyruvate in mitochondria

Citrate + ATP + CoA + $H_2O \rightarrow$ acetyl CoA + ADP + P_i + oxaloacetate

2 Ways to Generate NADPH

1. Malic enzyme

(NADP+-linked malate enzyme)

occurs exclusively in the cytoplasm = accounts for 60% of NADPH

Fatty acid synthesis requires the integration of multiple metabolic pathways

EICOSANOIDS

AA is metabolized to inflammatory mediators

Many current anti-inflammatory & pain medicines inhibit some portion of the AA pathway

Eicosanoid hormones are derived from PUFAs

 Arachidonic acid (20:4n6) is major precursor of multiple signal molecules:

prostaglandins (PG), prostacyclins, thromboxanes (TX) and leukotrienes (LT)

- PGs = 20 carbon fatty acids containing a 5carbon ring
- PGs stimulate inflammation, regulate blood flow, control ion transport, modulate synaptic transmission & induce sleep

COO-CH₃

Thromboxane A_2 (TXA₂)

Leukotriene B₄

Importance of eicosanoids

- Nobel Prize in 1982 for discovery of PG biological role and 1990 for PG synthesis
- PGs are found in almost all tissues & organs
- Ex of PG antagonists:
 - NSAIDs (inhibit COX → aspirin, ibuprofen)
 - corticosteroids (inhibit phospholipase A2 production)
- TXs are vasoconstrictors & hypertensive agent
 - role in thrombosis (clot in blood vessel)
- LTs & cysteinyl-LTs important in inflammation
 - asthma, psoriasis, anaphylaxis & atherosclerosis

Eicosanoid-based medicines

Type	Medical condition		
PGI ₁ analog	Pulmonary hypertension, avoiding reperfusion injury		
PG analog	Glaucoma, ocular hypertension		
PG analog	Labor induction		
PGE ₂	Labor induction		
PGI ₂ analog	Pulmonary arterial hypertension		
PGE ₁ analog	Stomach ulcers, labor induction		
LT receptor antagonist	Asthma, seasonal allergies		
PGI analog	Pulmonary hypertension		

Prostaglandin H₂

AA is hydrophobic and is funneled thru protein channel

The Accidence of the Accidence of the Accidence of the Accident of the Accidence of the Acc

Biosynthesis of membrane lipids and steroids

Alcohol

Glycerophospholipid constructed of 4 components

Phosphate

0

Membrane

1st step in synthesis of phospholipids (PLs) and triacylglycerols (TAGs) is the synthesis of phosphatidate

Phosphatidate (Diacylglycerol 3-phosphate)

Glycerol 3-phosphate

Lysophosphatidate

Phosphatidate — is built from L-glycerol-3-phosphate and activated fatty acids

Usually saturated

Phosphatidate

(DAG)

TAG synthesis proceeds via DAG

Triacylglycerol

Triacylglycerols (TAG)

- Stored energy in fat cells
 - adipose cells

- More energy/gram than carbohydrates
 - 9 kcal/g compared to 4 kcal/g
 - stored in anhydrous form (carbs 2g H₂O/g)
 - => fat has 6.75x > energy than hydrated glycogen

TAG cycle

Glycerophospholipids (phosphoglycerides)

glycerol-based PLs – main component of biological membranes

Diphosphatidylglycerol (cardiolipin)

	No. of			No. 2 of Charles
	Name of glycerophospholipid	Name of X	Formula of X	Net charge (at pH 7)
PA	Phosphatidic acid	_	— н	- 1
PE	Phosphatidylethanolamine	Ethanolamine		0
PC	Phosphatidylcholine	Choline	$-CH_2-CH_2-N(CH_3)_3$	0
PS	Phosphatidylserine	Serine	—СН ₂ —СН—ЙН ₃ СОО -	- 1
PG	Phosphatidylglycerol	Glycerol	- CH ₂ -CH-CH ₂ -OH OH	-1
PIP ₂	Phosphatidylinositol 4,5-bisphosphate	<i>myo</i> -Inositol 4,5- bisphosphate	H O—P OH H OH HO O—P 1 OH HO O—P	- 4
CL	Cardiolipin	Phosphatidyl- glycerol		- 2
			CH ₂ —O—C—R ²	

Biological role of PLs

- PC most common lipid in mammals
- PS is 10% of total PLs in mammals
- CL located in inner mitochondrial membrane (role in oxidative phosphorylation)
- Ampipathic = possesses both hydrophilic and hydrophobic properties

PL synthesis requires an activated intermediate

Strategy 1
Alcohol activation of CDP

Strategy 2

DAG activation of CDP

Phosphatidate

CDP-diacylglycerol

Strategy 1

PL synthesis from activated alcohol

CDP=cytidine diphosphate

CDP-diacylglycerol

Phosphatidylinositol

CMP

Inositol

NH₂

OH

HO

Strategy 2

PL synthesis from activated DAG

CTP=cytidine triphosphate
CDP=cytidine diphosphate
CMP=cytidine monophosphate

Phosphatidylethanolamine

Glycerophospholipid synthesis

PE and PC: Strategy 1 PI, PG, cardiolipin (CL): Strategy 2

PS, PE, PC are "coupled"
PS from PE or PC
PC from PE (+ 3 adoMet)

Sphingolipids

contain sphingosine backbone (not glycerol)

Sphingosine

glycerophospholipid

Phosphatidylinositol

Membrane lipid = concentration ↑ in central nervous system

Pathway integration for TAG and PL synthesis phosphatidate is produced from multiple pathways and is further incorporated into TAGs or PLs

Cholesterol biosynthesis

modulates fluidity in animal membranes and is precursor of steroid hormones

In 4 steps

where isoprene is the key intermediate

Cholesterol

1. Condensation of 3 Ac-CoA to mevalonate

- 2. Conversion of mevalonate to activated isoprene (3-isopentenyl pyrophosphate)
- 3. Condensation of 6 activated isoprene units to squalene
- 4. Cyclization

Step 1: Condensation of 3 Ac-CoA to mevalonate (6 carbons)

Step 2: Conversion of mevalonate to activated isoprenes (5 carbons)

Step 3: Cond. of isopreneunits to squalene (linear, 30 carbons)

Step 4: Cyclization (4 rings)

All 27 carbons in cholesterol are dervied from Ac-CoA

- 1. Condensation of 3 Ac-CoA to mevalonate limiting step!!
- 2. Conversion of mevalonate to activated isoprene (3-isopoentenyl pyrophosphate)
- 3. Condensation of 6 activated isoprene units to squalene
- 4. Cyclization

Regulation of HMG-CoA-reductase (integral membrane protein in ER)

- 1. Feedback cholesterol stimulates proteolysis
- 2. Hormonal inactivated by phosphorylation, activated by dephosphorylation
- 3. Transcription via SREBP (rate of synthesis) sterol regulatory element binding protein
- 4. Therapeutics mevalonate analogs competitive inhibitor statins lovastatin, atorvastatin Lipitor

SREBP pathway = sterol regulatory binding element protein

Cholesterol is a precursor to bilesalts (and to steroid hormones and vitamin D)

Cholesterol cholic acid CH₃ CH_3 HO OH **Taurocholate Glycocholate**

Enterohepatic circulation

circulation of bile from the liver, to the small intestine where it aids in fat digestion

hepatocytes metabolize cholesterol to lipid-soluble bile acids → bile salts conjugated to glycine or taurine

Glycocholate

the enterohepatic circulation of bile acids may be disrupted as a way to lower cholesterol

What is a lipid?

Classical definition:

biological molecule that is soluble in organic solvent, but insoluble in water

Modern (specific) definition:

fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds

More specific definition:

Hydrophobic small molecules that originate by carbanionbased condensations of thioesters (fatty acids, polyketides, etc.) and/or by carbocation-based condensations of isoprene units (prenols, sterols, etc)

Specific structural-based definition

Lipid Biosynthesis - summary

- Lipids overview classification, structure, synthesis
- Fatty acids in liver (fat) and cyotosol; Mal-CoA; multifunctional enzyme; modified in ER
- Eicosanoids important signaling molecules; play roles in pain and inflammation
- Triacylglycerols in liver, fat, and intestine; energy storage; phosphatidate; dynamic equilibrium
- **Phospholipids** in almost all cells; phosphatidate, 2 strategies for synthesis, membrane components
- Cholesterol in all cells; mostly liver, 4 steps, from Ac-CoA via isoprene, HMG-CoA reductase
- Bile acids important in fat digestion, enterohepatic circulation

Whew.....

- http://www.cyberlipid.org/
- http://www.lipidlibrary.co.uk/
- http://www.lipidmaps.org/
- http://www.metabolomics.se/
 - (contains downloadable file of today's lecture under the section "Courses")

